SOUTHERN SEA OTTER (*Enhydra lutris nereis*)
U.S. Fish and Wildlife Service, Ventura, California

STOCK DEFINITION AND GEOGRAPHIC RANGE

Southern sea otters are listed as threatened under the Endangered Species Act. They occupy nearshore waters along the mainland coastline of California from San Mateo County to Santa Barbara County (Figure 1). A small colony of southern sea otters also exists at San Nicolas Island, Ventura County, as a result of translocation efforts initiated in 1987. The San Nicolas Island colony is considered to be a “non-essential experimental” population under the Endangered Species Act.

Historically, southern sea otters ranged from Punta Abreojos, Baja California, Mexico to northern California (Wilson *et al.* 1991) or Oregon, or possibly as far north as Prince William Sound, Alaska (reviewed in Riedman and Estes 1990). During the 1700s and 1800s, the killing of sea otters for their pelts extirpated the subspecies throughout most of its range. A small population of southern sea otters survived near Bixby Creek in Monterey County, California, numbering an estimated 50 animals in 1914 (Bryant 1915). Since receiving protection under the International Fur Seal Treaty in 1911, southern sea otters have gradually expanded northward and southward along the central California coast. The estimated carrying capacity of California is approximately 16,000 animals (Laidre *et al.* 2001).

Mating and pupping of southern sea otters takes place year round, but a birth peak extending over several months occurs in the spring, and a secondary birth peak occurs in the fall (Siniff and Ralls 1991; Riedman *et al.* 1994). Male sea otters typically aggregate at the northern and southern limits of the range in winter and early spring, when some males that have maintained breeding territories in the predominantly female center of the range abandon their territories and join other males at its ends (Jameson 1989; Ralls *et al.* 1996).

All sea otters of the subspecies *Enhydra lutris nereis* are considered to belong to a single stock because of their recent descent from a single remnant population. Southern sea otters are geographically isolated from the other two recognized subspecies of sea otters, *E. l. lutris* and *E. l. kenyoni*, and have been shown to be distinct from these subspecies in studies of cranial

morphology (Wilson et al. 1991) and variation at the molecular level (Sanchez 1992; Cronin et al. 1996; Larson et al. 2002).

POPULATION SIZE

Data on population size have been gathered for more than 50 years. In 1982, a standardized survey technique was adopted to ensure that subsequent counts were comparable (Estes and Jameson 1988). This survey method involves shore-based censuses of approximately 60% of the range, with the remainder surveyed from the air. These surveys are conducted twice each year (in spring and fall). At San Nicolas Island, counts are conducted from shore on a quarterly basis. The highest of the four counts is used as the official count for the year.

Minimum Population Estimate

The 2007 3-year running average (2006-2008) is 2,826 individuals (U.S. Geological Survey, http://www.werc.usgs.gov/otters/ca-surveys.html) for the mainland population. The San Nicolas Island colony numbers about 42 animals (based on the high count for 2008), 37 independent sea otters and 5 dependent pups (U.S. Geological Survey unpub. data). Given the log-normal distribution of combined counts for the mainland and San Nicolas Island for 2006-2008, the estimate corresponding to the 20th percentile of this distribution, or N_{min}, is 2723 for the southern sea otter stock.

Current Population Trend

As recommended in the Final Revised Recovery Plan for the Southern Sea Otter (U.S. Fish and Wildlife Service 2003), three-year running averages are used to characterize population trends to dampen the effects of anomalous counts in any given year. Based on three-year running averages of the annual spring counts, the mainland southern sea otter population increased by an average of about three percent per year from 2003 to the present (Figure 2). Growth rates are highest at the southern end of the range, whereas growth in the northern and central portions of the range has been more sluggish, suggesting that sea otters may be approaching local carrying capacity in some areas (Tinker et al. 2006). The colony at San Nicolas Island has grown by an average of approximately nine percent annually since the early 1990s (Tinker et al. 2008).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

The maximum growth rate (R_{max}) for southern sea otters along the mainland coastline appears to be six percent per year. Recovering or translocated populations at Attu Island, southeast Alaska, British Columbia, and Washington state have all exhibited growth rates of up to 17 or 20 percent annually (Estes 1990, Jameson

![Southern Sea Otter Spring Counts 1983-2008](http://www.werc.usgs.gov/otters/ca-surveys.html)

and Jeffries 1999, Jameson and Jeffries 2005), but the mainland southern sea otter population has grown much more slowly. From the early 1900s to the mid-1970s, it increased at about five percent annually (Estes 1990). From 1983 to 1995, annual growth averaged about six percent. The population declined during the late 1990s but resumed growth in the early 2000s. Recent growth has leveled off, averaging approximately three percent per year from 2003 to the present. Growth rates at San Nicolas Island are higher, averaging approximately nine percent annually (Tinker et al. 2008), but these higher rates have never been seen in the mainland population as a whole. The sea otters at San Nicolas Island are a very small component of the southern sea otter stock. This small population is geographically removed from the mainland range and is subject to different threats and limitations than the mainland range. The higher growth rate for the San Nicolas Island animals is not representative of the overall stock, and it is not foreseeable that the mainland population will ever achieve the growth rate of the San Nicolas Island animals. Therefore, for the overall stock, we use an R_{max} of 6 percent. This R_{max} reflects the threats and limitations to which approximately 98 percent of the stock is exposed and is the maximum observed rate for that 98 percent of the stock.

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of three elements: the minimum population estimate (N_{min}); half the maximum net productivity rate ($0.5 R_{\text{max}}$); and a recovery factor (F_r). For the southern sea otter stock, $N_{\text{min}} = 2,723$, $R_{\text{max}} = 6$ percent, and $F_r = 0.1$. A recovery factor of 0.1 is used for the southern sea otter stock because, although its numbers are currently increasing, N_{min} is below 5,000 and the species is vulnerable to a natural or human-caused catastrophe, such as an oil spill, due to its restricted geographic distribution in nearshore waters (Taylor et al. 2002). Therefore, the PBR for the southern sea otter stock is 8 animals. It should be noted that because southern sea otters are not covered under section 118 of the MMPA, PBR does not apply to the governance of incidental take of southern sea otters in commercial fisheries.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Sea otters are susceptible to entanglement and drowning in gill nets. The set gill net fishery in California is estimated to have killed from 48 to 166 (average of 103) southern sea otters per year from 1973 to 1983 (Herrick and Hanan 1988) and 80 sea otters annually from June 1982 to June 1984 (Wendell et al. 1986). A 1991 closure restricted gill and trammel nets to waters deeper than 30 fathoms throughout most of the southern sea otter’s range (California Senate Bill No. 2563). In 1990, NMFS started an observer program using at-sea observers, which provided data on incidental mortality rates relative to the distribution of fishing effort. The observer program was active through 1994, discontinued from 1995 to 1998, and reinstated in the Monterey Bay area in 1999 and 2000 because of concern over increased harbor porpoise mortality. Based on a detailed analysis of fishing effort, sea otter distributions by depth, and regional entanglement patterns during observed years, NMFS estimated southern sea otter mortality in the halibut set gill net fishery to have been 64 in 1990, zero from 1991 to 1994, 3 to 13 in 1995, 2 to 29 in 1996, 6 to 47 in 1997, 6 to 36 in 1998, 5 in 1999, and zero in 2000 (Cameron and Forney 2000; Carretta 2001; Forney et al. 2001). The increase in estimated mortality from 1995 to 1998 was attributed to a shift in set gill net fishing effort into areas where sea otters are found in waters deeper than 30 fathoms.
Fishing with set gill nets has since been further restricted throughout the range of the southern sea otter. An order prohibiting the use of gill and trammel nets year-round in ocean waters of 60 fathoms or less from Point Reyes, Marin County, to Point Arguello, Santa Barbara County was made permanent in September 2002. In the waters south of Point Arguello, the Marine Resources Protection Act of 1990 (California Constitution Article 10B) defined a Marine Resources Protection zone in which the use of gill and trammel nets is banned. This zone includes waters less than 70 fathoms (128 meters) or within one mile, whichever is less, around the Channel Islands, and waters generally within three nautical miles offshore of the mainland coast from Point Arguello to the Mexican border. Although sea otters occasionally dive to depths of 100 meters, the vast majority (>99 percent) of dives are to depths of 40 meters or less.1 Therefore, because of these restrictions and the current extent of the southern sea otter’s range, southern sea otter mortalities resulting from entanglement in gill nets are believed to be currently at or near zero. An estimated 58 vessels participate in the CA angel shark/halibut and other species set gillnet (>3.5” mesh) fishery [72 FR 66048, November 27, 2007]. Approximately 24 vessels participate in the CA yellowtail, barracuda, and white seabass drift gillnet fishery (mesh size ≥3.5” and <14”) [72 FR 66048, November 27, 2007].

Three southern sea otter interactions with the California purse seine fishery for Northern anchovy and Pacific sardine have been documented during the past five years. In 2005, a contract observer in the NOAA Fisheries California Coastal Pelagic Species observer program documented the incidental, non-lethal capture of two sea otters that were temporarily encircled in a purse seine net targeting Northern anchovy but escaped unharmed by jumping over the corkline. In 2006, a contract observer in the same program documented the incidental, non-lethal capture of a sea otter in a purse seine net targeting Pacific sardine. Again, the sea otter escaped the net at end of the haul without assistance.2 Based on these observations and the levels of observer coverage in each year, 58 and 20 such interactions are estimated to have occurred in the CA sardine purse seine fishery in 2005 and 2006, respectively, but these estimates are accompanied by considerable uncertainty because of the low levels of observer coverage.3 In documented interactions, sea otters have been able to escape purse seine nets without assistance, but these incidents do not preclude mortality or serious injury. There are no additional data available to assess the risk of mortality or serious injury resulting from interactions with this fishery. The 2007 list of fisheries reorganized purse seine fisheries targeting anchovy and sardines into the “CA anchovy, mackerel, sardine purse seine” fishery. An estimated 63 vessels participate in the CA anchovy, mackerel, and sardine purse seine fishery [72 FR 66048, November 27, 2007].

The potential exists for sea otters to drown in traps set for crabs, lobsters, and finfish, but only limited documentation of mortalities is available. Hatfield and Estes (2000) summarize records of 18 sea otter mortalities in trap gear, 14 of which occurred in Alaska. With the exception of one sea otter, which was found in a crab trap, all of the reported Alaska mortalities involved Pacific cod traps and were either recorded by NMFS observers or reported to NMFS observers by fishers. Four sea otters are known to have died in trap gear in California: one in a

1 Personal communication, M. Tim Tinker, 2008. Research Wildlife Biologist, USGS-Western Ecological Research Center, Santa Cruz Field Station, and Department of Ecology & Evolutionary Biology, University of California at Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060.
3 Personal communication, Jim Carretta, 2008. Southwest Fisheries Science Center, NOAA, U.S. National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037.
lobster trap near Santa Cruz Island in 1987; a mother and pup in a trap with a 10-inch diameter opening (presumed to be an experimental trap) in Monterey Bay in 1987; and one in a rock crab trap 0.5 miles off Pt. Santa Cruz, California (Hatfield and Estes 2000). In 1995, the U.S. Geological Survey began opportunistic efforts to observe the finfish trap fishery in California. These efforts were supplemented with observations by the California Department of Fish and Game (CDFG) in 1997 and two hired observers in 1999. No sea otters were found in the 1,624 traps observed (Hatfield and Estes 2000). However, a very high level of observer coverage would be required to see any indication of trap mortality, even if mortality levels were high enough to substantially reduce the rate of population recovery (Hatfield et al., in prep.).

Controlled experiments conducted by the U.S. Geological Survey and the Monterey Bay Aquarium demonstrated that sea otters would enter a baited commercial finfish trap with inner trap funnel openings of 5.5 inches in diameter (Hatfield and Estes 2000). Hatfield et al. (in prep.) confirmed that some sea otters exposed to finfish, lobster, and mock Dungeness crab traps in a captive setting would succeed in entering them. Based on experiments with carcasses and live sea otters, they concluded that finfish traps with 5-inch-diameter circular openings would largely exclude diving sea otters; that circular openings of 5.5 to 6 inches in diameter and rectangular openings 4 inches high (typical of Dungeness crab pots) would allow the passage of sea otters up to about 2 years of age; and that the larger fyke openings of spiny lobster pots and finfish traps with openings larger than 5 inches would admit larger sea otters. Reducing the fyke-opening height of Dungeness crab traps by one inch (to 3 inches) would exclude nearly all diving sea otters while not significantly affecting the number or size of harvested crabs (Hatfield et al. in prep.).

Since January 2002, CDFG has required 5-inch sea-otter-exclusion rings to be placed in live-fish traps used along the central coast from Pt. Montera in San Mateo County to Pt. Arguello in Santa Barbara County. No rings are required for live-fish traps used in the waters south of Point Conception, and no rings are currently required for lobster or crab traps regardless of their location in California waters.

Data on the number of participating vessels in these fisheries are provided by CDFG and represent those vessels making at least one landing in each of the respective fisheries. Numbers of participating vessels are given by region, North (Oregon Border to Cape Mendocino), North-Central (Cape Mendocino to Point Año Nuevo), South-Central (Point Año Nuevo to Point Conception), and South (Point Conception to Mexico). From North to South, the average number of vessels participating in the Dungeness and rock crab fisheries from 2002-2006 was 215, 240, 43, and 113, respectively. The average number of vessels participating in the California spiny lobster fishery during this period was 0, 0, 2, and 163, respectively. The average number of vessels participating in the live-fish trap fishery during this period was 213, 86, 58, and 212, respectively. It should be noted that most of the sea otter range is coincident with the two central coast regions.

Available information on incidental mortality and serious injury of southern sea otters in commercial fisheries is very limited. Fisheries believed to have the potential to kill or injure southern sea otters are listed in Table 1. It should be noted that, due to the nature of potential interactions (entrapment or entanglement followed by drowning), serious injury is unlikely to be detected prior to the death of the animal.
Table 1. Summary of available information on incidental mortality and serious injury of southern sea otters in commercial fisheries that might take southern sea otters. n/a indicates that data are not available or are insufficient to estimate mortality/serious injury.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>DataType</th>
<th>Year(s)</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality/Serious Injury</th>
<th>Estimated Mortality/Serious Injury</th>
<th>Mean Takes</th>
</tr>
</thead>
</table>
| CA angel shark/halibut and other species set gillnet fishery (>3.5”)
 (since 1994)¹ | no fishery-wide observer program | 2002, 2003, 2004, 2005, 2006 | 0%, 0%, 0%, 0%, <10% | n/a, n/a, n/a, n/a, n/a | n/a, n/a | n/a |
| CA yellowtail, barracuda, and white seabass drift gillnet fishery (≥3.5” and <14”) | observer | 2002, 2003, 2004, 2005, 2006 | 11.5%, 10.4%, 17.6%, 0%, 0% | 0, 0, 0, n/a, n/a | n/a, n/a | n/a |
| CA anchovy, mackerel, and tuna purse seine | observer (since July 2004) | 2002, 2003, 2004, 2005, 2006 | 0%, 0%, 1.3%, <5% | n/a, n/a, n/a, 0, 0 | n/a, n/a | n/a |
| CA sardine purse seine | observer (since July 2004) | 2002, 2003, 2004, 2005, 2006 | 0%, 0%, 1.7%, <5% | n/a, n/a, n/a, 0, 0 | n/a, n/a | n/a |
| CA lobster, prawn, shrimp, rock crab, fish pot | n/a | 2002, 2003, 2004, 2005, 2006 | not observed² | n/a, n/a, n/a, n/a, n/a | n/a, n/a | n/a |
| WA/OR/CA crab pot (central CA portion only) | n/a | 2002, 2003, 2004, 2005, 2006 | not observed² | n/a, n/a, n/a, n/a, n/a | n/a, n/a | n/a |
| CA finfish and shellfish live trap/hook and line | n/a | 2002, 2003, 2004, 2005, 2006 | not observed² | n/a, n/a, n/a, n/a, n/a | n/a, n/a | n/a |
| Unknown hook and line fishery | stranding data | 2002, 2003, 2004, 2005, 2006 | 0, 1, 2, 1, 0 | ≥4, ≥0.8 | | |

¹The set gillnet fishery was observed from 1991-94 and then only in Monterey Bay during 1999-2000, where 20-25% of the local fishery was observed. Observer coverage in this fishery resumed in 2006 (12 sets observed) and continued into 2007 (248 sets observed). Despite no or low observer coverage in some years, mortality/serious injury of sea otters in this fishery is estimated to be at or near zero because of depth restrictions in place throughout the current mainland range of the southern sea otter.

²This fishery is classified as a Category III fishery [72FR66048]. Category III fisheries are not required to accommodate observers aboard vessels due to the remote likelihood of mortality and serious injury of marine mammals.
Other Mortality

A study of 3,105 beach-cast carcasses salvaged from 1968 through 1999 identified several patterns in the strandings that occurred during periods of population decline: increased percentages of (1) prime-age (3 to 10 years) animals, (2) deaths caused by white shark bites, (3) carcasses recovered in spring and summer, and (4) animals for which the cause of death was unknown (Estes et al. 2003). Analysis of beach-cast carcasses recovered from October 1997 to May 2001 showed that 13 percent of the mortalities resulted directly or indirectly from infection by acanthocephalans of the genus Profilicollis (Mayer et al. 2003). Common causes of death identified for fresh beach-cast carcasses necropsied from 1998 to 2001 included protozoal encephalitis, acanthocephalan-related disease, shark attack, and cardiac disease (Kreuder et al. 2003, Kreuder et al. 2005). Encephalitis caused by Toxoplasma gondii was associated with shark attack and heart disease, and these causes of death were more common in prime-age animals than in juveniles (Kreuder et al. 2003). Diseases (due to parasites, bacteria, fungi, or unspecified causes) were identified as the primary cause of death in 63.8 percent of the sea otter carcasses examined (Kreuder et al. 2003).

An unusually high number of stranded southern sea otters was recovered in 2003, prompting declaration of an Unusual Mortality Event for the period from 23 May to 1 October 2003. The number of strandings relative to the spring sea otter count from 1983 to 2007 is shown in Figure 3. In 2003, the relative number of strandings exceeded 10 percent of the spring count. No one cause appears to have been responsible for the increase in mortality. Relative mortality has remained nearly as high in subsequent years. The relative number of strandings in 2004, 2005, 2006, and 2007 constituted approximately 9.9 percent of the spring count.

Shootings and boat strikes are relatively low but persistent sources of mortality. Other rare sources of mortality include debris entanglement and complications associated with research activities. During the period from 2002-2006, 13 sea otters were shot, 17 were suspected to have been struck by boats, 1 was found entangled in plastic debris, and 2 died as a result of complications related to research activities (U.S. Geological Survey and CDFG unpub. data). Total observed mortality due to anthropogenic causes, excluding fisheries, is 33, yielding an estimated mortality of ≥33 and a mean annual mortality of ≥6.6.

It should be noted that mean annual mortalities reported here and in Table 1 are minimum estimates. Documentation of these sources of mortality comes primarily from necropsies of beach-cast carcasses. Because it is unknown to what extent the levels of human-caused mortality documented in beach-cast carcasses are representative of the relative contributions of known causes or of human-caused mortality as a whole, we are unable to give upper bounds for these estimates. Disease has been identified as the primary cause of

![Figure 3. Southern sea otter strandings relative to the spring count, 1983-2007. Data source: U.S. Geological Survey unpub. data.](image-url)
death in more than half of the beach-cast carcasses necropsied (Kreuder et al. 2003), but the anthropogenic contribution to disease levels in sea otters is currently unknown. Therefore, animals that died of disease are not included in the number of mortalities reported here.

STATUS OF STOCK

The southern sea otter is designated a fully protected mammal under California state law (California Fish and Game Code §4700) and was listed as a threatened species in 1977 (42 FR 2965) pursuant to the federal Endangered Species Act, as amended (16 U.S.C. 1531 et seq.). As a consequence of its threatened status, the southern sea otter is considered by default to be a “strategic stock” and “depleted” under the Marine Mammal Protection Act of 1972, as amended (16 U.S.C. 1361 et seq.).

The status of the southern sea otter in relation to its optimum sustainable population (OSP) level has not been formally determined, but population counts are well below the estimated lower bound of the OSP level for southern sea otters, about 8,400 animals (U.S. Fish and Wildlife Service 2003), which is roughly 50 percent of the estimated carrying capacity of California (Laidre et al. 2001). Because of the lack of observer data for several fisheries that may interact with sea otters, it is not possible to determine whether the total fishery mortality and serious injury for sea otters is insignificant and approaching zero mortality and serious injury rate.

Habitat Issues

Sea otters are particularly vulnerable to oil contamination (Kooyman and Costa 1979; Siniff et al. 1982), and oil spill risk from large vessels that transit the California coast remains a primary threat to the southern sea otter. Studies of contaminants have documented accumulations of dichlorodiphenyltrichloro-ethane (DDT), dichlorodiphenyl-dichloroethylene (DDE) (Bacon 1994; Bacon et al. 1999), and polychlorinated biphenyls (PCBs) in stranded sea otters (Nakata et al. 1998), as well as the presence of butyltin residues, which are known to be immunosuppressant (Kannan et al. 1998). Kannan et al. (2006, 2007) found a significant association between infectious diseases and elevated concentrations of perfluorinated contaminants and polychlorinated biphenyls (PCBs) in the livers of sea otters, suggesting that chemical contaminants may play a role in driving patterns of sea otter mortality. Food limitation and nutritional deficiencies may also contribute to sea otter mortality (Bentall 2005, Tinker et al. 2006, Tinker et al. 2008).

REFERENCES

Institute, University of California, Santa Barbara, California. MMS Cooperative Agreement Number 14-35-0001-31063.

